Analyze & Deploy Scalable LLM Architectures is an intermediate course for ML engineers and AI practitioners tasked with moving large language model (LLM) prototypes into production. Many powerful models fail under real-world load due to architectural flaws. This course teaches you to prevent that.

Gain next-level skills with Coursera Plus for $199 (regularly $399). Save now.

Recommended experience
Skills you'll gain
- Infrastructure as Code (IaC)
- Release Management
- Application Deployment
- Model Deployment
- Retrieval-Augmented Generation
- Performance Tuning
- Kubernetes
- Analysis
- Configuration Management
- Application Performance Management
- LLM Application
- Containerization
- Performance Testing
- Systems Analysis
- Large Language Modeling
- Performance Analysis
- MLOps (Machine Learning Operations)
- Continuous Delivery
- Cloud Deployment
- Scalability
Details to know

Add to your LinkedIn profile
January 2026
See how employees at top companies are mastering in-demand skills

There are 3 modules in this course
This module establishes the foundational mindset that "performance lives in the pipeline." Learners will discover that a large language model (LLM) application is a multi-stage system where overall speed is dictated by the slowest component. They will learn to deconstruct a complex Retrieval-Augmented Generation (RAG) architecture, trace a user request through it, and use system diagrams to form an evidence-based hypothesis about the primary performance bottleneck.
What's included
2 videos1 reading2 assignments
In this module, learners move from hypothesis to evidence. They will learn to use system logging and profiling data to quantify the precise latency contribution of each stage in an LLM pipeline. The focus is on designing small, reversible, and hypothesis-driven experiments to prove or disprove their initial findings and distinguish a performance bottleneck's root cause from its symptoms.
What's included
1 video2 readings2 assignments
This module bridges the gap between a working prototype and a resilient, production-ready service. Learners will design and manage declarative deployments using Helm and Kubernetes, package a multi-component RAG stack, and implement Horizontal Pod Autoscaling (HPA) for dynamic, cost-efficient scaling. They will also master the critical operational skills of performing controlled, zero-downtime rollouts and rapid rollbacks.
What's included
2 videos2 readings2 assignments
Instructor

Offered by
Why people choose Coursera for their career




Frequently asked questions
To access the course materials, assignments and to earn a Certificate, you will need to purchase the Certificate experience when you enroll in a course. You can try a Free Trial instead, or apply for Financial Aid. The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you purchase a Certificate you get access to all course materials, including graded assignments. Upon completing the course, your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile.
Yes. In select learning programs, you can apply for financial aid or a scholarship if you can’t afford the enrollment fee. If fin aid or scholarship is available for your learning program selection, you’ll find a link to apply on the description page.
More questions
Financial aid available,
¹ Some assignments in this course are AI-graded. For these assignments, your data will be used in accordance with Coursera's Privacy Notice.




