Universidades Anáhuac
Deep Learning: Del Concepto a la Práctica
Universidades Anáhuac

Deep Learning: Del Concepto a la Práctica

Eduardo Rodríguez del Angel
Jorge Alberto Cerecedo Cordoba

Instructors: Eduardo Rodríguez del Angel

Included with Coursera Plus

Gain insight into a topic and learn the fundamentals.
Beginner level
No prior experience required
88 hours to complete
3 weeks at 29 hours a week
Flexible schedule
Learn at your own pace
Gain insight into a topic and learn the fundamentals.
Beginner level
No prior experience required
88 hours to complete
3 weeks at 29 hours a week
Flexible schedule
Learn at your own pace

What you'll learn

  • Describir las técnicas de Deep Learning utilizando TensorFlow y Keras para resolver problemas de reconocimiento de patrones y generación de texto.

Details to know

Shareable certificate

Add to your LinkedIn profile

Recently updated!

March 2025

Assessments

27 assignments

Taught in Spanish
Placeholder

Earn a career certificate

Add this credential to your LinkedIn profile, resume, or CV

Share it on social media and in your performance review

Placeholder

There are 4 modules in this course

En esta sección, los estudiantes serán introducidos al mundo del Deep Learning, comenzando con una explicación de las redes neuronales artificiales. Se explorarán los componentes y la estructura de las NN, y se realizará un primer proyecto práctico de programación para reconocer dígitos manuscritos.

What's included

13 videos1 reading11 assignments

Esta sección se centra en el uso de TensorFlow y Keras para la construcción y entrenamiento de redes neuronales. Los estudiantes aprenderán a implementar modelos para la detección de dígitos manuscritos y el diagnóstico de cáncer de mama, utilizando estas poderosas herramientas de Deep Learning

What's included

10 videos2 readings6 assignments

Explorarás las redes neuronales convolucionales (CNN), una técnica avanzada para el procesamiento de imágenes. Se desarrollarán proyectos prácticos para el reconocimiento de términos manuscritos y el lenguaje de señas, aprendiendo a guardar, cargar y compartir los modelos de redes neuronales.

What's included

14 videos1 reading8 assignments

Esta sección se dedica a las redes neuronales recurrentes (RNN) y las Long Short-Term Memory (LSTM), utilizadas principalmente para la generación de texto. Los contenidos de está sección te permitirán comprender cómo crear modelos que generen texto de manera coherente, practicando con ejemplos y ejercicios específicos.

What's included

8 videos3 readings2 assignments

Instructors

Eduardo Rodríguez del Angel
3 Courses30 learners

Offered by

Recommended if you're interested in Data Analysis

Why people choose Coursera for their career

Felipe M.
Learner since 2018
"To be able to take courses at my own pace and rhythm has been an amazing experience. I can learn whenever it fits my schedule and mood."
Jennifer J.
Learner since 2020
"I directly applied the concepts and skills I learned from my courses to an exciting new project at work."
Larry W.
Learner since 2021
"When I need courses on topics that my university doesn't offer, Coursera is one of the best places to go."
Chaitanya A.
"Learning isn't just about being better at your job: it's so much more than that. Coursera allows me to learn without limits."

New to Data Analysis? Start here.

Placeholder

Open new doors with Coursera Plus

Unlimited access to 10,000+ world-class courses, hands-on projects, and job-ready certificate programs - all included in your subscription

Advance your career with an online degree

Earn a degree from world-class universities - 100% online

Join over 3,400 global companies that choose Coursera for Business

Upskill your employees to excel in the digital economy

Frequently asked questions