By completing this course, learners will be able to implement logistic regression models in SAS, prepare datasets through missing value imputation and categorical encoding, analyze predictors using clustering and screening, and evaluate models with confusion matrices and logit plots. Designed for aspiring data scientists, analysts, and business professionals, this course blends statistical rigor with hands-on SAS demonstrations.



What you'll learn
Implement logistic regression models with SAS.
Prepare datasets with imputation and categorical encoding.
Evaluate models using clustering, screening, and confusion matrices.
Skills you'll gain
- Statistical Analysis
- Statistical Modeling
- Data Transformation
- Data Manipulation
- Predictive Analytics
- Regression Analysis
- Feature Engineering
- Data Cleansing
- Applied Machine Learning
- Statistical Methods
- Classification And Regression Tree (CART)
- Predictive Modeling
- Exploratory Data Analysis
- Data Processing
- SAS (Software)
Details to know

Add to your LinkedIn profile
September 2025
11 assignments
See how employees at top companies are mastering in-demand skills

There are 3 modules in this course
This module introduces learners to the foundations of logistic regression and the importance of data preparation when working in SAS. Students explore the basics of binary classification, apply logistic regression using PROC LOGISTIC, and prepare datasets by handling missing values and encoding categorical variables. By the end of this module, learners will have the skills to structure datasets correctly and build their first logistic regression models in SAS.
What's included
7 videos4 assignments1 plugin
This module focuses on advanced data preparation techniques to improve logistic regression performance. Learners examine variable clustering to reduce redundancy, use screening techniques to evaluate predictor importance, and explore subset selection methods to refine model inputs. The emphasis is on selecting the most relevant predictors, improving efficiency, and ensuring model stability in SAS.
What's included
8 videos4 assignments
This module advances into model building strategies and performance evaluation. Students explore stepwise and backward elimination techniques to refine predictors, implement models using PROC LOGISTIC and ODS, and assess model performance with misclassification analysis, confusion matrices, and logit plots. Learners will gain the ability to build robust logistic regression models and validate them effectively in SAS.
What's included
6 videos3 assignments
Explore more from Data Analysis
- Status: Free Trial
- Status: Free Trial
Why people choose Coursera for their career





Open new doors with Coursera Plus
Unlimited access to 10,000+ world-class courses, hands-on projects, and job-ready certificate programs - all included in your subscription
Advance your career with an online degree
Earn a degree from world-class universities - 100% online
Join over 3,400 global companies that choose Coursera for Business
Upskill your employees to excel in the digital economy
Frequently asked questions
To access the course materials, assignments and to earn a Certificate, you will need to purchase the Certificate experience when you enroll in a course. You can try a Free Trial instead, or apply for Financial Aid. The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you purchase a Certificate you get access to all course materials, including graded assignments. Upon completing the course, your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile.
Yes. In select learning programs, you can apply for financial aid or a scholarship if you can’t afford the enrollment fee. If fin aid or scholarship is available for your learning program selection, you’ll find a link to apply on the description page.
More questions
Financial aid available,